209 research outputs found

    Mathematical derivation of viscous shallow-water equations with zero surface tension

    Get PDF
    The purpose of this paper is to derive rigorously the so called viscous shallow water equations given for instance page 958-959 in [A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys, 69 (1997), 931?980]. Such a system of equations is similar to compressible Navier-Stokes equations for a barotropic fluid with a non-constant viscosity. To do that, we consider a layer of incompressible and Newtonian fluid which is relatively thin, assuming no surface tension at the free surface. The motion of the fluid is described by 3d Navier-Stokes equations with constant viscosity and free surface. We prove that for a set of suitable initial data (asymptotically close to "shallow water initial data"), the Cauchy problem for these equations is well-posed, and the solution converges to the solution of viscous shallow water equations. More precisely, we build the solution of the full problem as a perturbation of the strong solution to the viscous shallow water equations. The method of proof is based on a Lagrangian change of variable that fixes the fluid domain and we have to prove the well-posedness in thin domains: we have to pay a special attention to constants in classical Sobolev inequalities and regularity in Stokes problem

    Whitham's equations for modulated roll-waves in shallow flows

    Full text link
    This paper is concerned with the detailed behaviour of roll-waves undergoing a low-frequency perturbation. We rst derive the so-called Whitham's averaged modulation equations and relate the well-posedness of this set of equations to the spectral stability problem in the small Floquet-number limit. We then fully validate such a system and in particular, we are able to construct solutions to the shallow water equations in the neighbourhood of modulated roll-waves proles that exist for asymptotically large time

    Nonlinear stability of viscous roll waves

    Get PDF
    Extending results of Oh--Zumbrun and Johnson--Zumbrun for parabolic conservation laws, we show that spectral stability implies nonlinear stability for spatially periodic viscous roll wave solutions of the one-dimensional St. Venant equations for shallow water flow down an inclined ramp. The main new issues to be overcome are incomplete parabolicity and the nonconservative form of the equations, which leads to undifferentiated quadratic source terms that cannot be handled using the estimates of the conservative case. The first is resolved by treating the equations in the more favorable Lagrangian coordinates, for which one can obtain large-amplitude nonlinear damping estimates similar to those carried out by Mascia--Zumbrun in the related shock wave case, assuming only symmetrizability of the hyperbolic part. The second is resolved by the observation that, similarly as in the relaxation and detonation cases, sources occurring in nonconservative components experience greater than expected decay, comparable to that experienced by a differentiated source.Comment: Revision includes new appendix containing full proof of nonlinear damping estimate. Minor mathematical typos fixed throughout, and more complete connection to Whitham averaged system added. 42 page

    Relative entropy for compressible Navier-Stokes equations with density dependent viscosities and applications

    Full text link
    Recently, A. Vasseur and C. Yu have proved the existence of global entropy-weak solutions to the compressible Navier-Stokes equations with viscosities ν(ϱ)=μϱ\nu(\varrho)=\mu\varrho and λ(ϱ)=0\lambda(\varrho)=0 and a pressure law under the form p(ϱ)=aϱγp(\varrho)=a\varrho^\gamma with a>0a>0 and γ>1\gamma>1 constants. In this note, we propose a non-trivial relative entropy for such system in a periodic box and give some applications. This extends, in some sense, results with constant viscosities initiated by E. Feiersl, B.J. Jin and A. Novotny. We present some mathematical results related to the weak-strong uniqueness, convergence to a dissipative solution of compressible or incompressible Euler equations. As a by-product, this mathematically justifies the convergence of solutions of a viscous shallow water system to solutions of the inviscid shall-water system
    corecore